Homework \#7
Math 527, UNH fall 2015
Due Thursday, March 23 in recitation.
Same instructions as usual regarding writing your name, section number, etc.

Problem 1: Use the power series expansions of $\sin x$ and $\cos x$ to show that

$$
\frac{d}{d x} \sin x=\cos x
$$

That is, differentiate the power series of $\sin x$ and show it equals the power series of $\cos x$.

Problem 2: Use the power series method to find the general solution of the differential equation. How does it compare to the solution you'd get from the ansatz $y=e^{\lambda x}$ ?

$$
y^{\prime \prime}+k^{2} y=0
$$

Problems 3,4: Find two linearly independent power-series solutions of the ODE, centered about $x=0$. If the power series does not simplify to a known function or have a simple expression for the coefficients, provide the first four terms of each solution. Specify the region on which the power series solutions are guaranteed to converge.
3. $y^{\prime \prime}-x y=0$
4. $y^{\prime \prime}-(x+1) y^{\prime}-y=0$

Problem 5: Solve the initial value problem using power series. Specify the region on which the solution is guaranteed to converge.

$$
(x-1) y^{\prime \prime}-x y^{\prime}+y=0, \quad y(0)=-2, \quad y^{\prime}(0)=6
$$

Problems 3, 4, and 5 are Zill section 6.1 problems 17, 25, and 29.

