Problems 1-6. The following plots show arrows $\mathbf{x}^{\prime}=d \mathbf{x} / d t$ for linear systems. $\mathbf{x}^{\prime}=A \mathbf{x}$. In each case, A has distinct eigenvalues and two eigenvectors.

- Say whether the eigenvalues are real or complex.
- If the eigenvalues are real, draw the eigenvectors, label them \mathbf{v}_{1} and \mathbf{v}_{2}, and specify the signs of λ_{1} and $\lambda_{2}\left(\right.$ e.g $\left.\operatorname{Re} \lambda_{1}<0, \operatorname{Re} \lambda_{2}>0\right)$.
- If the eigenvalues are complex, specify the sign of their real part (e.g $\operatorname{Re} \lambda<0$).
- Draw trajectories starting from the points $(x, y)=(2,0),(0,2),(-2,0)$, and $(0,-2)$.
- If $\mathbf{x}(t) \rightarrow 0$ for all choices of initial conditions, then the system $\mathbf{x}^{\prime}=A \mathbf{x}$ is said to be stable. If $\mathbf{x}(t) \rightarrow \infty$ for all but very special choices of initial conditions (such as $\mathbf{x}(0)$ lying exactly on an eigenvector), then the system is said tp be unstable. Specify whether the system is stable or unstable.

(2)
(3)

(4)

