Due Tuesday, Dec. 8 in recitation.

Problems 1-6. Find the general solution of the system of equations. For problems with complex eigenvalues, express your answer in both complex and real-valued form. Prime notation means differentiation in t, i.e. $x^{\prime}=d x / d t$.

1. $x^{\prime}=x+2 y$
$y^{\prime}=4 x+3 y$
2. $x^{\prime}=-4 x+2 y$
$y^{\prime}=-\frac{5}{2} x+2 y$
3. $x^{\prime}=x+y$
$y^{\prime}=-2 x-y$
4. $x^{\prime}=5 x+y$
$y^{\prime}=-2 x+3 y$
5. $x^{\prime}=-x+3 y$
$y^{\prime}=-3 x+5 y$
6. $x^{\prime}=12 x-9 y$
$y^{\prime}=4 x$

Problem 7. Solve the initial value problem.

$$
\begin{aligned}
x^{\prime} & =-3 x-y \\
y^{\prime} & =9 x-3 y \\
x(0) & =3, y(0)=5 .
\end{aligned}
$$

Problem 8. Find the general solution.

$$
\begin{aligned}
x^{\prime} & =2 x+4 y+4 z \\
y^{\prime} & =-x-2 y \\
z^{\prime} & =-x-2 z
\end{aligned}
$$

Most problems adapted from Section 8.2 of Zill's "First Course in Differential Equations," 9th edition.

